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Outline

Attention mechanisms are a powerful component in neural networks.
Key to recent successes in MT, NLP, and vision tasks.
So far: attention over a finite set (words, pixel regions, etc.)

This work: We generalize attention to arbitrary sets, possibly continuous.

This Paper: From Discrete to Continuous Attention

(Bahdanau et al., 2015, ICLR)

Finite set S = {1, . . . , L}
Three ingredients:

Score vector f ∈ RL

Transformation from f to probability
vector p ∈ 4L

Value matrix V ∈ RD×L

Output:
Weighted average Vp ∈ RD

Our work:
Measure space S (e.g. continuous)
Three ingredients:

Score function f : S → R
Transformation from f to density
p : S → R+,

∫
S p = 1

Value function V : S → RD

Output:
Ep[V (t)] =

∫
S p(t)V (t) ∈ RD

=⇒

Score Function f (t) and Value Function V (t)

Score function: Parametrized as fθ(t) = θ>φ(t), where
φ(t) ∈ RM are basis functions.
Parameters θ ∈ RM are output by a neural network.

Example: φ(t) = [t, vec(tt>)] and θ = [Σ−1µ, vec(−1
2Σ−1)] lead to a quadratic form

fθ(t) = −1
2

(t − µ)>Σ−1(t − µ).

Value function: Parametrized as VB(t) = Bψ(t), where
ψ(t) ∈ RN are basis functions (e.g., Gaussian RBFs)
B ∈ RD×N fit to measurements by ridge regression (see paper).

Ω-Regularized Prediction Map (Ω-RPM)

Transforms score function f into probability density p ≡ p̂Ω[f ]:
p̂Ω[f ] = argmax

p
Ep[f (t)]− Ω(p), Ω convex regularizer.

−Ω Shannon/differential entropy =⇒ softmax/Gibbs distributions (exponential families):
p̂Ω[f ] = softmax(f ), p̂Ω[f ](t) = exp(f (t)− τ )

−Ωα Tsallis α-entropy =⇒ α-entmax (deformed exponential family):

p̂Ωα
[f ](t) =

[
1 + (α− 1)(f (t)− τ )

] 1
α−1
+

Particular cases: (continuous) softmax (α = 1) and sparsemax (α = 2).
Blondel et al. (2020, JMLR),Martins and Astudillo (2016, ICML), Peters et al. (2019, ACL), Tsallis (1988)

Example: Gaussian and Truncated Paraboloid (2D)

With t ∈ R2 and f (t) = −1
2(t − µ)>Σ−1(t − µ):
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(continuous softmax, α = 1) (continuous sparsemax, α = 2)
Truncated paraboloid has sparse, varying support!

Key Result I: Forward Pass

Assuming
Quadratic score fθ(t) = θ>φ(t) = −1

2(t − µ)>Σ−1(t − µ)

Value function VB(t) = Bψ(t) where ψ(t) are Gaussian RBFs
Then:

Continuous softmax (α = 1):
Ep̂Ω[fθ][VB(t)] becomes product of Gaussians =⇒ closed form.

Continuous sparsemax (α = 2):
Ep̂Ω[fθ][VB(t)] closed form in 1D, easy to compute numerically in 2D.

Key Result II: Backprop

How to backpropagate?
For any α, Jacobian is a “generalized covariance” (see paper):

∂Ep̂Ω[fθ][VB(t)]

∂θ
= B>covp̂Ω[fθ],2−α(φ(t), ψ(t)).

Also tractable for the two cases above.

Experiments

1D continuous attention for NLP (document classification and NMT)
2D continuous attention for vision (VQA-v2)

Doc. Class. NMT De-En VQA-v2 VQA-v2
IMDB (%) IWSLT (BLEU) Test-Dev (%) Test-Std (%)

Discrete softmax 90.78 23.92 65.83 66.13
Continuous softmax 90.98 24.00 65.96 66.27
Continuous sparsemax 91.10 24.25 65.79 66.10

VQA: Attention Maps
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Conclusions

We generalized attention and Ω-RPMs to continuous domains
When Ω is a α-Tsallis regularizer: continuous and sparse densities
Forward and backprop efficient for α ∈ {1, 2} with quadratic scores and Gaussian RBFs
Proof of concept (1D/2D): document classification, NMT, and VQA.
Future work: Multimodal attention (mixtures of Gaussians or TPs)

Open-source code:
https://github.com/deep-spin/mcan-vqa-continuous-attention
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