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(2-Regularized Prediction Map (2-RPM)

Experiments

Attention mechanisms are a powerful component in neural networks.
m Key to recent successes in MT, NLP, and vision tasks.
m So far: attention over a finite set (words, pixel regions, etc.)

Transforms score function f into probability density p = pg|f]: m 1D continuous attention for NLP (document classification and NMT)

m 2D continuous attention for vision (VQA-v2)

Doc. Class. NMT De-En VQA-v2 VQA-v2
IMDB (%) IWSLT (BLEU) Test-Dev (%) Test-Std (%)

palf] = argmaxE,[f(t)] — Q(p), (2 convex regularizer.
p

—( Shannon/differential entropy —> softmax/Gibbs distributions (exponential families):

This work: We generalize attention to arbitrary sets, possibly continuous. A _ A _
5 y oEts, POSSBY palf] = softmax(f),  palf](t) = exp(f(t) — 7) Discrete softmax 90.78 23.92 65.83 66.13
This Paper: From Discrete to Continuous Attention —Q, Tsallis a-entropy — a-entmax (deformed exponential family): Continuous softmax 20.98 24.00 65.96 66.27
A 1 Continuous sparsemax  91.10 24.25 65.79 66.10
polf1(t) = |1+ (a = 1)(F(t) — 7)] %
(Bahdanau et al., 2015, ICLR) Our work: Particular cases: (continuous) softmax (o = 1) and sparsemax (o = 2). VOA: A v
. : : Attention Maps
Finite set S = {1,...,L} Measure space 5 (e.g. continuous) Blondel et al. (2020, JMLR),Martins and Astudillo (2016, ICML), Peters et al. (2019, ACL), Tsallis (1988) b
Three ingredients: Three ingredients: What is the woman looking at? computer computer
m Score vector f € R m Score function f : 5 — R Example: Gaussian and Truncated Paraboloid (2D)
m Transformation from f to probability m Transformation from f to density
vector p € Al p:S—=Ry, [op=1 With t € R?and f(t) = —(t — ) "Z7Y(t — p):
m Value matrix V € RPxL m Value function V : S — RP
Output: Output:

m Weighted average Vp € R”

N

l' R

m E,[V(1)] = [sp(t)V() € RP
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(continuous softmax, o = 1) (continuous sparsemax, o = 2)

Truncated paraboloid has sparse, varying support!

(original image) (discrete attention) (continuous softmax) (continuous sparsemax)

Key Result I: Forward Pass !
Conclusions

Assuming | | | |
m Quadratic score f(t) = 07 é(t) = —%(t )TNt — ) m We generalized attention and €2-RPMs to continuous domains

m Value function Vi(t) = By(t) where 1(t) are Gaussian RBFs m When (2 is a a-Tsallis regularizer: continuous and sparse densities
Then: m Forward and backprop efficient for o € {1, 2} with quadratic scores and Gaussian RBFs
' m Proof of concept (1D/2D): document classification, NMT, and VQA.

m Future work: Multimodal attention (mixtures of Gaussians or TPs)

Continuous softmax (o = 1):

m E; 71| Va(t)] becomes product of Gaussians = closed form. Open-source code:
Continuous sparsemax (o = 2):

m s 71[Va(t)] closed form in 1D, easy to compute numerically in 2D.

Score Function f(t) and Value Function V/(t)

Score function: Parametrized as f(t) = 0 ' ¢(t), where
m ¢(t) € RM are basis functions.
m Parameters § € R" are output by a neural network.
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