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Motivation

Commonly we have to opt between discrete or continuous models
Language is symbolic and mostly discrete
Neural networks learn and use continuous representations

What happens in-between? Can sparsity help?

Transformations from RK to△K−1

How can we convert a vector of real numbers z ∈ RK (scores for the several symbols,
often called logits) into a probability vector y ∈ △K−1?

y = softmax(z) ∝ exp(z)
y = limτ→0+ softmax(z/τ )
y = sparsemax(z) := argminy∈△K−1∥y − z∥

Densities over the simplex△K−1

There are several works on defining distributions on the simplex△K−1

The Dirichlet, the Concrete (Maddison et al., 2017; Jang et al., 2017), and the
Logistic-Normal (Atchison and Shen, 1980) are restricted to ri(△K−1)

The Hard Concrete Louizos et al. (2018) and rectified Gaussians (Palmer et al., 2017) are
mixed discrete/continuous hybrids limited to K = 2

This work:
Mathematical theory for handling mixed random variables
Provide extensions to K > 2

Extending truncated densities to K > 2

We define probability densities with respect to the direct sum measure,

µ⊕(A) =
∑
f ∈F

µf (A ∩ ri(f )), (1)

where µf is the dim(f )-dimensional Lebesgue measure for dim(f ) > 0, and the counting
measure for dim(f ) = 0.

Mixed random variables

How to define probability densities?
1 Define a probability mass function PF (f ) on F

2 For each face f ∈ F, define a probability density pY |F (y | f ) over ri(f )

The probability of a set A ⊆ △K−1 is given by

Pr{y ∈ A} =

∫
A

p⊕Y (y )dµ
⊕ =

∑
f ∈F

PF (f )

∫
A∩ri(f )

pY |F (y | f ) (2)

Recovers both discrete and continuous distributions!

Information Theory for mixed random variables

See our paper for generalizations of information theoretic concepts such as entropy,
Kullback–Leibler divergence, and mutual information.
The entropy of a r.v. X with respect to a measure µ is

Hµ(X ) = −
∫
X
pX (x)logpX (x)dµ(x), with

∫
X
pX (x)dµ(x) = 1 (3)

X finite, µ counting measure: Shannon’s discrete entropy
X ⊆ Rk continuous, µ Lebesgue measure: differential entropy
What if µ is the direct sum measure?

H⊕(Y ) := H(F ) + H(Y | F ) (4)

= −
∑
f ∈F

PF (f )logPF (f )︸ ︷︷ ︸
discrete entropy

+
∑
f ∈F

PF (f )

(
−
∫
f

pY |F (y | f )logpY |F (y | f )
)

︸ ︷︷ ︸
differential entropy

Average length of the optimal code where the sparsity pattern of y ∈ △K−1 must be encoded
losslessly and where there is a predefined bit precision for the fractional entries of y .
The maximum entropy mixed distribution is written as a generalized Laguerre polynomial

log2(2 + 2N) for K = 2, instead of log2(2) = 1 in the purely discrete case

Intrinsic characterization

Specify a mixture of distributions directly over the faces of△K−1: PF and pY |F for each f ∈ F.
Mixed Dirichlet (two parameters: w ∈ RK and α ∈ RK

>0)
Sample a face f ∼ PF (f ) ∝

∏
k∈f exp(wk)

Sample Y |F = f ∼ Dir(α|f ) where α|f masks out entries of α not supported by f

Extrinsinc characterization

Start with a distribution over the ambient space and project it to the simplex using sparsemax.
K-D Hard Concrete (generalization of the binary Hard Concrete for K > 2)

Y ′ ∼ Concrete(z , β), Y = sparsemax(λY ′), with λ ≥ 1. (5)

Gaussian-Sparsemax (generalization of a double-sided rectified Gaussian for K > 2)
N ∼ N(0, I), Y = sparsemax(z + Σ1/2N) (6)
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Figure: The Logistic-Normal (left), assigns zero probability to all faces but ri(△K−1). The Gaussian-Sparsemax (right) induces a
distribution over the 1-dimensional edges (shown as a histogram), and assigns Pr{(1, 0, 0)} = .022.

Can also be defined intrinsically
Expressed via the orthant probability of multivariate Gaussians for K > 2
Simple expression for K = 2; entropy and KL divergence in closed form

Experiments

Emergent communication game (inducing sparse communication between two agents)
A sender sees an image and emits a single-symbol message from a fixed vocabulary
A receiver reads the symbol and tries to identify the correct image out of a set of 16

Method Success (%) Nonzeros ↓
Gumbel-Softmax 78.84 ±8.07 256
Gumbel-Softmax ST 49.96 ±9.51 1
K -D Hard Concrete 76.07 ±7.76 21.43 ±17.56

Gaussian-Sparsemax 80.88 ±0.50 1.57 ±0.02

Bit-Vector VAE on Fashion-MNIST (studying the impact of the direct sum entropy)
We consider 128 binary latent bits and maximize the ELBO

Method Entropy NLL Sparsity (%) ↑
Binary Concrete C ≈ 3.60 0
Gumbel-Softmax D = 3.49 0 Incoherent (discrete) entropy computation
Gumbel-Softmax ST D = 3.57 100
Hard Concrete X ≈ 3.57 45.64
Gaussian-Sparsemax X ≈ 3.53 82.82 Coherent objective and unbiased gradients!
Gaussian-Sparsemax X = 3.49 73.83

Regression towards voting proportions (using the Mixed Dirichlet as a likelihood function)
We use the UK election data; the observations are vectors of proportions over 5 parties
Modeling simplex-valued data with the Dirichlet is tricky
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Figure: The Mixed Dirichlet addresses the pathologies of the Dirichlet in this setting, showing a slight advantage over the continuous
categorical (Gordon-Rodriguez et al., 2020), likely due to the fact that Mixed Dirichlet samples are often sparse at test time.

Conclusions

Mathematical framework for handling mixed random variables
Direct sum measure as an alternative to the Lebesgue-Borel and the counting measures
Generalizations of information theoretic concepts for mixed symbols
Experiments on learning sparse representations and avoiding ill-defined log-likelihoods
Future work: More effective intrinsic parametrizations; mixed structured variables

Open-source code: https://github.com/deep-spin/sparse-communication
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