Non-Exchangeable Conformal Risk Control

António Farinhas^{1,2}, Chrysoula Zerva^{1,2}, Dennis Ulmer^{3,4}, André F. T. Martins^{1,2,5} ¹Instituto de Telecomunicações, ²Instituto Superior Técnico, Universidade de Lisboa (Lisbon ELLIS Unit), ³IT University of Copenhagen, ⁴Pioneer Centre for Artificial Intelligence, ⁵Unbabel

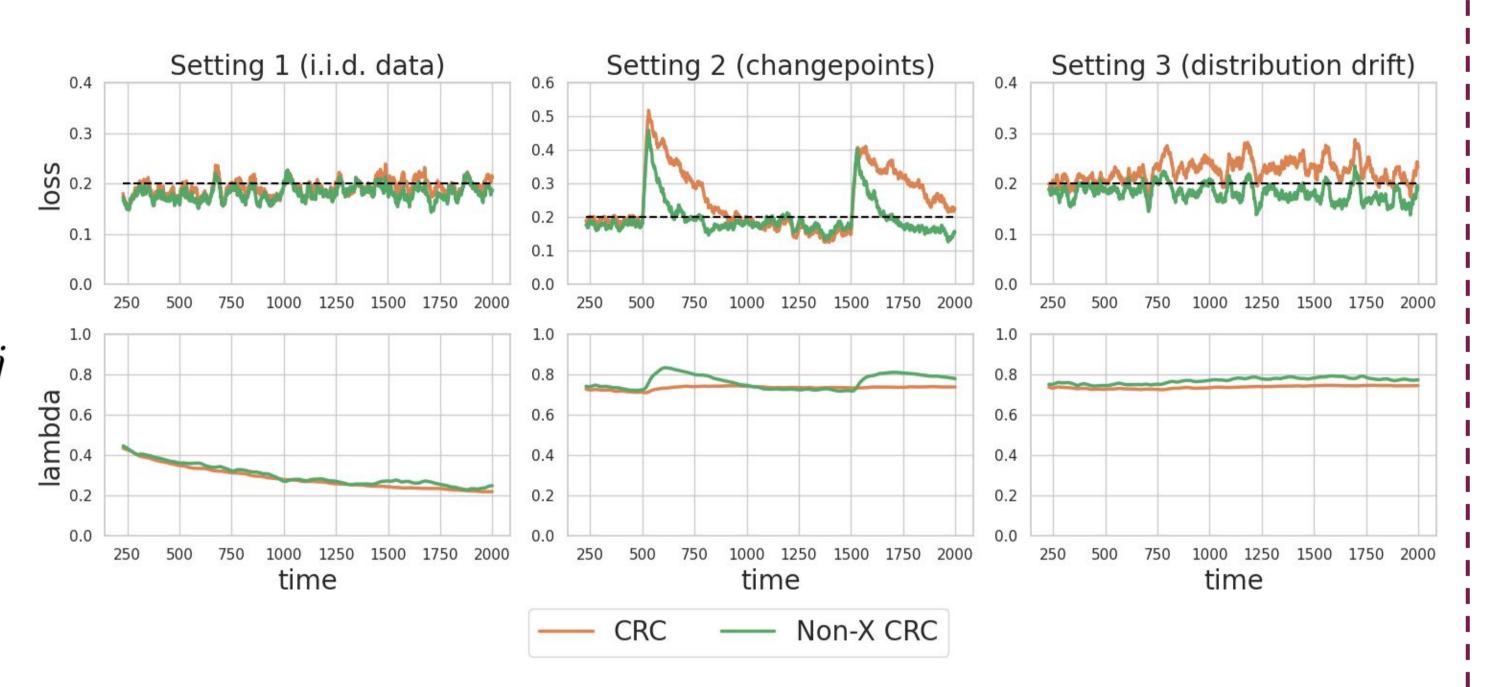
	Conformal prediction has sparked • What if coverage is not your • What if the data is n	
Motivation		
$\mathbb{P}ig(Y_{n+1}\in \mathcal{C}(X_{n+1})ig)\geq 1-lpha$ Limitations:	We sample N=2000 datapoints (X_i, Y_i) $X_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \mathbf{I}_M)$ and $Y_i \sim \text{sign}(\mathbf{W}X_i - 0.5)$ 1. <u>exchageable data</u> : $\mathbf{W} = \mathbf{I}_M$ 2. <u>changepoints</u> : we start with $\mathbf{W}^{(0)} = \mathbf{I}$ point $k > 0$ we rotate the coefficient and $\mathbf{W}_{1,j}^{(k)} = \mathbf{W}_{M,j}^{(k-1)}$ 3. <u>distribution drift</u> : we start with $\mathbf{W}^{(0)}$ last matrix of (2); we compute each \mathbf{V} interpolating between $\mathbf{W}^{(0)}$ and $\mathbf{W}^{(l)}$ • We fit M independent logistic regres • Prediction sets of the form $\mathcal{C}_{\lambda}(X_i) :=$ • We use weights $w_i = 0.99^{n+1-i}$ • We minimize the false negative rate	
Barber et al. (2024) and Angelopoulos et al. (2024) offer solutions to these problems separately. We extend these lines of work and propose non-exchangeable		
Our proposal	Monitoring electricit	
We define prediction sets $C_{\lambda}(\cdot)$, where λ is a parameter such that $\lambda \leq \lambda' \implies C_{\lambda}(\cdot) \subseteq C_{\lambda'}(\cdot)$, and provide guarantees of the form: $\mathbb{E}[L(\hat{\lambda}; (X_{n+1}, Y_{n+1}))] \leq \alpha + (B - A) \sum_{i=1}^{n} \tilde{w}_{i} d_{\mathrm{TV}}(Z, Z^{i})$ Assumptions:	• We fit a least squares regression models • We use weights $w_i = 0.99^{n+1-i}$ • Prediction sets of the form $C_{\lambda}(x_i) = [$ • We minimize $L(\lambda; (x_i, y_i)) = \begin{cases} 0, \\ f(x_i) - 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	
• Monotonically nonincreasing loss wrt to λ (shrinks as the prediction set grows). This is accomplished by using $\hat{\lambda} = \inf \left\{ \lambda : \frac{N_w}{N_w+1} \hat{R}_n(\lambda) + \frac{B}{N_w+1} \leq \alpha \right\}, \hat{R}_n(\lambda) = \frac{1}{N_w} \sum_{i=1}^n w_i L(\lambda; (x_i, y_i))$ where $N_w := \sum_{i=1}^N w_i$.		

and Resilience Plan (project C645008882-00000055; Center for Responsible AI), and by Fundação para a Ciência e Tecnologia (contract UIDB/50008/2020).

a lot of interest but: r main concern? not i.i.d.?

Multilabel classification in a time series (synthetic)

- $)\in \mathbb{R}^{M} imes \mathbb{R}^{M}$, where $(\mathbf{5}+.1\mathcal{N}(\mathbf{0},\mathbf{I}_M)))$
- \mathbf{I}_M and for every change nts s.t. $\mathbf{W}_{i,j}^{(k)} = \mathbf{W}_{i-1,j}^{(k-1)}$ for i>j
- $\mathbf{P} = \mathbf{I}_M$ and set $\mathbf{W}^{(N)}$ to the $\mathbf{W}^{(k)}$ by linearly $\tau(N)$



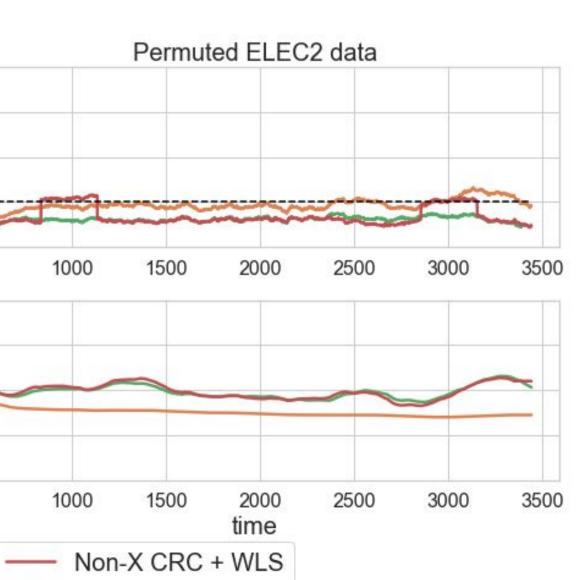
ession models $i=\{m\in [M]\,:\, f_m(X_i)\geq 1-\lambda\}$ te $L(\lambda; (X_i, Y_i)) = 1 - rac{|Y_i \cap \mathcal{C}_\lambda(X_i)|}{|Y_i|}$

Method	Setting 1 (i.i.d. data)	Setting 2 (changepoints)	Setting 3 (distribution drift)
CRC	0.191 / 0.183	0.246 / 0.228	0.225 / 0.218
non-X CRC	0.181 / 0.175	0.196 / 0.183	0.182 / 0.175

ity usage

odel at each time step

$$egin{aligned} & [f(x_i)-\lambda, f(x_i)+\lambda] \ & ext{if} \left|f(x_i)-y_i
ight| \leq \lambda, \ & -y_i|-\lambda, & ext{otherwise.} \end{aligned}$$



Open-domain question answering

• Two stages: retriever model + reader model • We calibrate the best token-based F1-score

 $L(\lambda;(X_i,Y_i))=1-\max\{F_1(a,c):c\in \mathcal{C}_\lambda(X_i),a\in Y_i\},$ ${\mathcal C}_\lambda = \{y: f(X_i,y) \geq \lambda\}$

assumption of data-independent weights

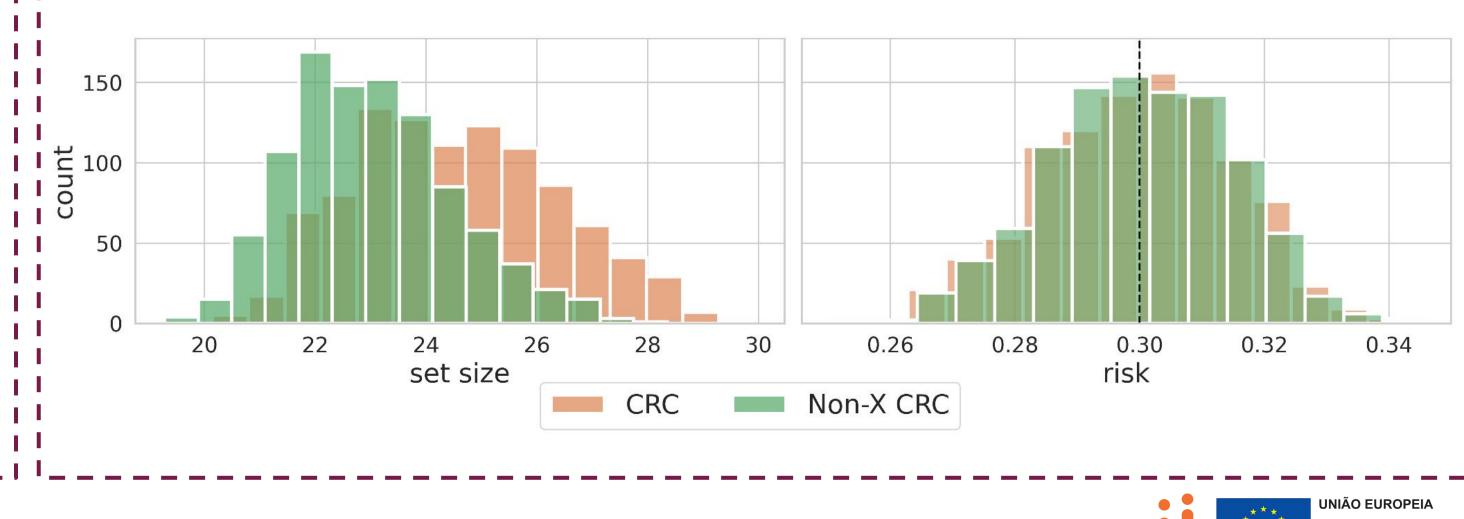


Table: Mean/median for settings (1), (2), and (3)

• We use weights based on sentence similarity, relaxing the

Fundo Europeu de

esenvolvimento Regiona